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Abstract
Hydrogen varies its stable state in accordance with its temperature and density. Though
molecular gas is stable in the environment, the monatomic state is stable in high density ranges
of more than about 1 g cm−3. Such dense hydrogen has many aspects never seen in the
molecular state. For example, in the range over about 108 K temperature and over 103 g cm−3

density, great efforts are being made to realize inertial confinement fusion (ICF). Additionally,
in the range of temperature lower than about 105 K and of density more than 104 g cm−3 pycno
nuclear fusion is supposed to occur. Here for the first time we have derived the expression for
the Debye screening length of the interionic potential, taking into account correlated electron
pairs, and investigated the nuclear reaction rate in superconductive solid metallic hydrogen. It is
revealed that the screening length is shortened by correlated electron pairs that follow the
Bose–Einstein distribution in the superconductive state. The bosonization increases the number
of lower energy states of the electrons to increase the screening effects on the potential with
decreases in the temperature, resulting in a significant enhancement of the nuclear reaction rate
by more than 10 orders of magnitude.

1. Introduction

Hydrogen exhibits a strong quantum effect at low temperature
and ultra-high pressure due to its low nuclear mass [1–3].
One of the most characteristic states, solid metallic hydrogen,
was predicted in 1935 [4] and experimental research has been
ongoing since then. A state known as monatomic solid metallic
hydrogen (MSMH) is expected to form at pressures over
400 GPa [5–8]. Liquid metallic hydrogen has been realized [9]
but the temperature and pressure ranges over which it exists
are far from the predicted stability region of MSMH. The
physical properties of MSMH are still little known because
it has not been generated experimentally. Due to the light
mass and lack of closed shell electrons surrounding the
nucleus, MSMH should be very different from the other alkali
metals as it is predicted to be a high-temperature elemental
superconductor [10] and the effect of the state of conductive
electrons on the crystal structure will be much greater than
in other elements. Therefore it is important to reveal the
characteristic properties of MSMH. We have been looking at

the superconductive state of MSMH. In the superconductive
state, a proportion of the electrons form correlated electron
pairs. The mass-center motion of a correlated pair follows
Bose–Einstein (BE) statistics, in contrast to normal electrons
which follow Fermi–Dirac (FD) statistics. Therefore, it would
be valuable to determine the influence of the electronic state
in superconductive MSMH. One approach is to evaluate the
Debye length, which represents the degree of screening of the
ionic Coulomb potential.

2. Derivation of the Debye length in MSMH

Generally in an ordinary solid other than metallic hydrogen,
each nucleus opposes closed shell electrons. If a solid is
an insulator, the internuclear potential can be approximated
by the Lennard-Jones potential. If a solid is a metal,
conductive electrons also affect the screening of the interionic
potential. By taking into account that most solids have a
similar density, closed shell electrons are always important for
sustaining the crystal. As for metallic hydrogen, which does
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not have orbital electrons, interionic interaction is described
by a Coulomb potential screened by conductive electrons.
Such a screened Coulomb potential φ(r) is represented by
φ(r) = e exp(−r/λ)/4πε0r , where r is the distance from
the nucleus, e is the electric charge, ε0 is the electric constant
and λ is the Debye length which shows the degree of
screening. This approximation appears in many fields. For
example, in the classical state electrons follow the Maxwell–
Boltzmann distribution with temperature T such that λ =√

ε0kBT/e2ne, where kB is the Boltzmann constant and ne

is the average electron number density. In the same way, in
metals the electron temperature is represented by the Fermi
temperature TF, and degenerate electrons follow the Fermi–
Dirac distribution such that λ = √

2ε0kBTF/3e2ne ≡ λe [11],
where λe is the Debye length of free electrons in a metal.
This quantity λ must be modified for the superconductive state
because a proportion of the free electrons form correlated
electron pairs. The screening effect of the correlated pairs
is described by λc. Though the number of correlated pairs
is much smaller than that of total conductive electrons,
the free electrons and the correlated pairs coexist in the
superconductive state. Therefore the total Debye length λ is
synthesized from λe and λc. First, we derive an expression
for λ and then determine the average density of the correlated
pairs nc, together with other necessary values. We treat a
correlated pair as a quasi-particle and assume that it follows
the BE distribution [12]. The energy of a correlated pair is
ε = vF p/2 − 2eφ, where vF is the Fermi velocity [13] and p is
the momentum. To treat the chemical potential μ, we introduce
the quantity z = exp(μ/kBT ), and then Bose–Einstein (BE)
distribution is given as

fBE(ε(�x, �p)) = 1

z−1eβε(�x, �p) − 1
, (1)

where (�x, �p) is the mass center of a correlated pair and its
momentum, z, is decided from the equation

Nc = 1

V

∫
fBE(ε(�x, �0)) d�x + 1

(2π h̄)3

∫
fBE(ε(�x, �p)) d�x d �p.

(2)
Here Nc = V nc is the total number of pairs and β = 1

kB T . To
integrate equation (2), we approximate φ as its average value
φ0 (φ0 = 0 in quasineutrality). Using definite integration of
the Riemann-zeta function

1

n!
∫ ∞

0

xndx

α−1ex − 1
= ζn+1(α) (0 � α � 1), (3)

the integration is executed and

Nc = 1

z−1 − 1
+ V

(2π h̄)3

8π

(β vF
2 )3

ζ3(z). (4)

z and β relate one to one and z increases monotonically when
β increases. First, we think β → ∞ (T → 0) which leads to

z = Nc

1 + Nc
� 1. (5)

When β → 0 (T → ∞), it means z → 0 (because ζ3(z)
β3 < ∞).

And so we expand ζ3(z) � z + O(z2) and

Nc = z

1 − z
+ V

(2π h̄)3

8π

(β vF
2 )3

(z + O(z2)). (6)

Re-forming the equation,

Nc =
(

1 + Nc + V

(2π h̄)3

8π

(β vF
2 )3

)
z + O(z2), (7)

and finally

z = Nc

1 + Nc + V
(2π h̄)3

8π

(β
vF
2 )3

� 1

1 + 1
ζ3(1)

(
T
Tc

)3
. (8)

Here Tc is the critical temperature defined as

Tc = 3

√
π2

ζ3(1)

h̄

kB

vF

2
n

1
3
c . (9)

When we take T → 0 in equation (8), it approaches
equation (5). This means that equation (8) is a good
approximation at almost all temperatures. Therefore we use
equation (8) as the approximation of z. By expanding the
BE distribution function about φ to first order, we obtain an
expression for the local density of the correlated pairs

n′
c(x) = nc

(
1 + g(z)

kBT
2eφ(x)

)
. (10)

Here,

g(z) = 1

1 − z
+ 1 − z

z
ζ2(z) − ζ3(z)

z
. (11)

Regarding the local free electron density, since ne �
nc, we neglect the change in ne induced by the creation of
correlated pairs. By expanding the FD distribution function
in the same way, the local free electron density n′

e(�x) is given
as

n′
e(�x) = ne

(
1 + 3eφ(�x)

2kBTF

)
. (12)

Setting the screening effects of the correlated pairs as λ2
c =

ε0kBT/(2e)2g(z)nc, by substituting equations (10) and (12) for
the Poisson equation

	φ = − 1

ε0

(−e(n′
e − 2nc) − 2en′

c + ene
)
, (13)

the total Debye length in the superconductive solid metallic
hydrogen λsc can be expressed as

1

λ2
sc

= 1

λ2
e

+ 1

λ2
c

= 3e2ne

2ε0kBTF
+ (2e)2g(z)nc

ε0kBT
. (14)

The first term on the right-hand side represents screening from
the normal conductive electrons which follow FD statistics.
The second is a new term that represents the effect of the
correlated pairs and is important in our subsequent analysis
of MSMH. It is not a simple expression for the reason that
λc is a valid parameter at all temperatures, even outside the
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superconductive region. For example, as T → ∞, the
expression shows that z → 0, g(z) → 1 and λc →√

ε0kBT/(2e)2nc, which is the Debye length of a classical
particle. Conversely at T < Tc, g(z) ≈ ((T/Tc)

3/ζ3(1))−1.
So the Debye length λc becomes

λc =
√

ε0kBT

(2e)2g(z)nc
≈

√
ε0kBT 4

ζ3(1)(2e)2T 3
c nc

. (15)

Next we need to determine nc. By using a correction factor γ

to express the difference between the actual Fermi surface and
the ideal Fermi sphere, nc is given by

nc = 3h̄wD

4kBTF
neγ, (16)

where h̄ is Planck’s constant divided by 2π , and wD is the
Debye frequency. By using equation (9), expression (16)
becomes

Tc

TF
=

(

D

4ζ3(1)TF

)1/3

γ 1/3, (17)

where the Debye temperature is 
D = h̄wD/kB. MSMH
is predicted to have Tc ≈ 102 K and 
D ≈ 103 K [10].
For the majority of metals TF ≈ 105 K. We assume that the
Fermi temperature for MSMH is of the same order, and conse-
quently γ ≈ 10−7. To determine wD, we use one-dimensional
coupled oscillations and the harmonic approximation: wD =
16
9π

√
e2/2πε0ma3 exp(−a/2λ)

√
1 + a/λ + (a/λ)2/2 where m

is the nuclear mass and a is a lattice constant. Based on the
equations and parameters derived so far, we now investigate
how the characteristic quantities for MSMH will change. We
assume γ does not depend on the density.

Figure 1 shows temperature dependence of the Debye
length λe, λc and λsc. The calculations were performed in solid
metallic deuterium in order to calculate the nuclear reaction
rate afterwards. At T/Tc > 0.1, λsc ≈ λe and at T/Tc < 0.1,
λsc decreases from λe and asymptotically approaches λc. λe

is the screening effect of the Fermi-degenerate electron and is
constant with respect to the temperature in the region of T �
TF. λc is the effect of the correlated pairs and λc ∝ T 2 under
the critical temperature, as shown in equation (15). When
the temperature is higher than 0.1Tc, λc in equation (14) is
insignificant because ne � nc. On the other hand, λc becomes
important at lower temperatures because λc ∝ T 2.

In other materials, the crystal density and structure are
sustained by closed shell electrons. However, solid metallic
hydrogen does not oppose any closed shells so the Debye
length affects lattice constants strongly and the lattice constant
would be shortened as temperature goes down. Additionally,
internuclear reaction would be strengthened below the critical
temperature.

Then we calculate the nuclear reaction rate for supercon-
ductive MSMH. Because the nuclei in the crystal do not diffuse
from their equilibrium positions due to zero-point oscillation,
we estimate the reaction rate using the procedure outlined be-
low rather than using the S-matrix. A similar idea was put
forward in [14], but differed in that penetration probability was
used. To simplify the calculation of reaction rate, we consider

λ 
×1

0-1
1 (m

)

T/Tc

λsc  
λe  
λc  

0

 0.5

1

 1.5

2

 2.5

3

 3.5

4
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Figure 1. Temperature dependence of the Debye length. The
calculations were done in deuterium. λsc is the total Debye length, λe

and λc are that of the Fermi-degenerate electron and the correlated
electron pairs, respectively. The calculations were performed at
n = 1031 m−3, where Tc is expected to be 945 K.

(This figure is in colour only in the electronic version)

deuterium (a Bose particle) instead of hydrogen (a Fermi par-
ticle). Despite their different mass, both hydrogen and deu-
terium have the same electric charge and do not oppose closed
shells in the metallic state. Therefore, it is reasonable to con-
sider that the effect of changes of electric state on the crystals
may be similar. In this case, we treat the crystal as a simple
cube and then n ≈ ne = a−3. The reaction rate per unit
volume and unit time R is given by multiplication of the in-
verse of the vibrational period, the density of pairs of nearest-
neighbor nuclei, the probability that the two nearest nuclei can
collide and the penetration probability. The frequency of the
relative motion of a nuclear pair is then regarded as wD and
the oscillation period is consequently t = 2π/wD. Putting
the number of nearest-neighbor nuclei as N , the density of a
pair of nearest-neighbor nuclei is nN/2. We assume each nu-
cleus oscillates in an approximately isotropic potential. Be-
cause the internuclear distance is much larger than the nuclear
radius ra, the solid angle over which two nuclei can collide is
� ≈ πr 2

a /4πa2 = r 2
a /4a2. A reaction can occur when the di-

rection of motion is within the angle �, which implies that the
contribution of direction to the reaction rate is �/4π . Denoting
the penetration probability as P , R is

R ≈ 1

t
× nN

2
× �

4π
× P = wDnN�P

16π2
. (18)

When the relative motion of two nuclei is one-dimensional, P
can be expressed as

P = exp

(

−2
√

2m∗

h̄

∫ r ′

2ra

√
eφ(x) − K dx

)

(19)

by using the Wentzel–Kramers–Brillouin approximation.
Here, m∗ is the reduced mass, the energy of the nucleus K
consists of a density term e2 exp(−a/λ)/4πε0a and a zero-
point energy term h̄wD/2, and r ′ is a classical turning point that
satisfies eφ(r ′) − K = 0. The reaction rate can be expressed
as R(λ) because it varies with λ through wD and P .
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Figure 2. Temperature dependence of the nuclear reaction rate ratio
Rsc/Re. Re and Rsc are the reaction rates supposing normal
conducting and the superconductive state, respectively. Rsc/Re

indicates the enhancement effects due to the correlated electron pairs,
and the ratio increases at lower temperature. The calculations were
performed at n = 1031 m−3, as in figure 1.

3. Results and discussion

Figure 2 shows the temperature dependence of the reaction
rate taking into account the correlated electron pairs. Re ≡
R(λe) and Rsc ≡ R(λsc) respectively. Re is constant with
respect to the temperature like λe in figure 1. Rsc changes at
a temperature of about T/Tc = 0.1 because λsc changes at
the same temperature. The reaction rate is enhanced by the
presence of correlated pairs. The temperature dependence of
Rsc is always dRsc/dT < 0. This is because the screening
effect is much stronger than decreases in the kinetic energy of
the nuclei.

Figure 3 shows the density dependence of the reaction
rate taking into account the correlated electron pairs. There
is a peak in the ratio Rsc/Re. This is due to it being a
superconductive state. To prove this argument, we define R0 ≡
R(∞) as the reaction rate without screening (the Debye length
is regarded as ∞) and show the density dependence of Re and
Rsc normalized by R0 in figure 4. There are different changes
on Re/R0 and Rsc/R0. As for Re/R0, because a ∝ n−1/3 and
λe ∝ n−1/6, the effect of λe diminishes with increasing density
and Re/R0 decreases monotonically to unity. On the other
hand, Rsc/R0 has a peak as Rsc/Re in figure 3. The peak arises
from two conflicting changes induced in Rsc by an increase in
density. The first is a weakening of the screening, the same
effect as for Re/R0, while the second is a strengthening of the
screening caused by the growth of nc. Growth of nc shortens
λc and λsc and enhances the nuclear reaction rate.

4. Conclusion

In summary, we have investigated monatomic solid metallic
hydrogen in the superconductive state taking into account
changes in the statistical electron distribution. We have derived
an expression for the Debye length including two components,
one of which is normal electrons and the other correlated
electron pairs. As the temperature decreases, effects of the
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Figure 3. Density dependence of the reaction rate ratio Rsc/Re. A
peak emerges due to the existence of the correlated electron pairs.
The density is normalized by n0 = 1030 m−3 which is a typical value
for common solids. The calculations were performed at T = 10 K.
Because Tc increases monotonically with density, Tc > 10 K for all
n > n0, hence the superconductive state spans the whole range of the
figure if the density range corresponds to the metallic state.
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Figure 4. Density dependence of the reaction rate ratio normalized
by R0. R0 is defined for the condition λ = ∞ to see the different
screening effects between the normal conducting and the
superconductive state. The calculations were performed at T = 10 K
as in figure 3.

superconductive state appear, shortening the Debye length.
In solid metallic hydrogen, the Debye length is inseparably
related to the lattice constant and ionic state. Therefore the
result that the reaction rate Rsc increases at lower temperatures
is unique to MSMH in the superconductive state and implies
peculiar ionic dynamics. The generation of solid metallic
hydrogen is very challenging, so the ultimate test of the results
is beyond current experimental techniques, but is nevertheless
interesting and would be of help in research into high pressure
metals in astrophysics.
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